Topology optimization of structures: A minimum weight approach with stress constraints
نویسندگان
چکیده
Sizing and shape structural optimization problems are normally stated in terms of a minimum weight approach with constraints that limit the maximum allowable stresses and displacements. However, topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. In this kind of formulations, the aim is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized (the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement constraints are taken into account. In this paper we analyze and compare both approaches, and we present a FEM minimum weight with stress constraints (MWSC) formulation for topology structural optimization problems. This approach does not require any stabilization technique to produce acceptable optimized results, while no truss-like final solutions are necessarily obtained. Several 2D examples are presented. The optimized solutions seem to be correct from the engineering point of view, and their appearence could be considered closer to the engineering intuition than the traditional truss-like results obtained by means of the widespread maximum stiffness (minimum compliance) approaches.
منابع مشابه
ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کاملIsogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm
Topology optimization has been an interesting area of research in recent years. The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures. A two-dimensional plate is analyzed statically and the nodal displacements are calculated. The nodal displacements using Isogeometric analysis are found to be ...
متن کاملVOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کاملA NEW HYBRID ALGORITHM FOR TOPOLOGY OPTIMIZATION OF DOUBLE LAYER GRIGS
In this paper, for topology optimization of double layer grids, an efficient optimization method is presented by combination of Imperialist Competitive Algorithm (ICA) and Gravitational Search Algorithm (GSA) which is called ICA-GSA method. The present hybrid method is based on ICA but the moving of countries toward their relevant imperialist is done using the la...
متن کاملEFFICIENT SIMULATION FOR OPTIMIZATION OF TOPOLOGY, SHAPE AND SIZE OF MODULAR TRUSS STRUCTURES
The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in Engineering Software
دوره 36 شماره
صفحات -
تاریخ انتشار 2005